Fans Page

Sains - Al-Qur'an dan Sunnah

Alangkah baiknya jika kita meninjau ilmu sains kepada Al-Qur'an dan sunnah

Asy-Syaikh Abdul Aziz bin Baz berkata

Tidak ada satu dalil dari Al-Qur'an dan sunnah yang bertentangan dengan sains dan matematika. Jika terjadi perselisihan diantara keduanya maka manusialah yang salah dalam memahaminya

Jadilah Ilmuan yang tegar di atas sunnah

Seorang yang potensinya rata-rata tidak menutup kemungkinan untuk menjadi Ilmuan besar. Bersemangatlah !! Jadilah Ilmuan yang tegar di atas sunnah

Salah satu bukti penciptaan oleh Allah ta'ala

Kemungkinan terciptanya alam semesta adalah 10^tak hingga. Sedangkan peluang lebih kecil dari 10^-50 adalah kemustahilan. Tak dapat ditawar lagi, alam semesta pasti diciptakan Allah ta'ala

Rosulullah shalallahu 'alaihi wa salam bersabda

"Bersungguh-sungguhlah dalam meraih apa yang bermanfaat bagimu, dengan memohon pertolongan kepada Allah, dan jangan malas." (HR. Muslim)

Jumat, 19 Agustus 2011

Bagaimanakah lemak berubah menjadi energi?

Lemak adalah sumber utama energi untuk banyak organisme seperti halnya karbohidrat, dan nutrisi lainnya. Walaupun, struktur molekulnya sangat berbeda, secara mengejutkan katabolisme lemak sama dengan nutrisi lainnya. Dengan kata lain, beraneka ragam molekul dengan berbagai molekul akhirnya memecah menjadi karbondioksida (CO2), air (H2O), dan ATP, yang merupakan aliran energi.
Katabolisme mengikuti tiga langkah umum untuk semua jenis nutrisi termasuk lemak dan karbohidrat. Langkah pertama adalah konversi molekul kecil lemak dan karbohidrat menjadi asetil koA. Berikutnya, adalah proses oksidasi asetik koA dalam siklus asam sitrat (siklus asam trikarboksilat, atau siklus TCA) menghasilkan air, karbondioksida, dan elektron, secara berkelanjutan, asetil koA mengubah bentuknya menjadi zat antara seperti sitrat dan fumarat. Pembentukan karbon dioksida pada tahap kedua dilepaskan ke luar oleh sistem respirasi (pernafasan) dan elektron-elektron digunakan dalam langkah terakhir, yakni sistem transpor elektron, sejumlah ATP dan air dihasilkan dengan reaksi berantai. Reaksi kimia pembentukan air secara sederhana dapat ditulis sebagai :

2H+ + 1/2 O2 + 2 e- → H2O

Kesimpulannya, tidak masalah jenis zat apapun yang dimasukkan dalam tubuh, tahap-tahap dasar yang digambarkan di atas selalu sama.

Lemak dan karbohidrat, seperti dua kereta yang berdampingan menuju satu stasiun, berubah menjadi senyawa umum, asetil koA. Namun,perbedaan antara lemak dan karbohidrat adalah pada proses pembentukan asetil koA.

Mula-mula karbohidrat mengurai menjadi glukosa atau monosakarida lainnya, kemudian berubah menjadi piruvat dan akhirnya menjadi asetil koA. Di sisi yang lain, lemak berubah menjadi asam lemak dan gliserol oleh sistem pencernaan, dan setelah itu, asetil koA dibentuk dari asam lemak melewati proses yang disebut sebagai oksidasi-β.

Karbohidrat à glukosa àpiruvat àasetil koA
Lemak à asam lemak + gliserol àasetil koA.

Rumus Kimia
Hubungan Metabolisme antara Glukosa dan asam lemak. (Atas izin Dr. Marcel Blanchaer)
Kelebihan energi dalam organisme biasanya disimpan dalam sel lemak dalam bentuk triasilgliserol. Ketika energi dibutuhkan, sebagai contoh, ketika melakukan olahraga, hormon akan memicu aktivitas lipase triasilgliserol, yang merupakan enzim yang penting dalam penguraian lemak. Lemak akan memecah menjadi asam lemak dam gliserol oleh enzim, kemudian dibawa oleh serum albumin ke dalam aliran darah untuk menuju sel di mana membutuhkan bahan bakar (sumber makanan). Di tempat sel tujuan, asam lemak masuk ke dalam mitokondria dan tiga tahap dasar (oksidasi β hingga asetil koA, siklus TCA dan transfer elektron) akan diikuti untuk menghasilkan ATP.

Secara umum dikatakan bahwa 20 menit berolahraga dibutuhkan untuk membakar lemak secara efisien. Hal ini bukanlah mitos, tapi merupakan skenario yang dipahami secara ilmiah. Konsep intinya adalah enzim membutuhkan suhu yang tepat untuk bekerja secara efisien. Dalam hal ini, lipase triasilgliserol bekerja paling baik pada suhu yang didapat setelah berolahraga selama 20 menit. Kurang dari 20 menit, maka hanya asam lemak yang mengambang di aliran darah saja yang digunakan, karenanya, setidaknya 20 menit berolahraga dibutuhkan untuk membakar lemak dalam tubuh.


Dikutip dari http://www.chem-is-try.org/tanya_pakar/bagaimanakah-lemak-berubah-menjadi-energi/

Superatom: Mengubah Atom Non-Magnet Menjadi Magnet

Kebanyakan atom atau unsur memiliki kecenderungan untuk membentuk molekul senyawa dengan karakteristik yang berbeda dengan unsur penyusunnya maupun unsur lain yang ada di tabel periodik. Namun beberapa unsur ditemui dapat membentuk kelompok atom yang menyerupai unsur lain di tabel periodik dengan karakter magnetik yang tidak biasa.

Suatu tim dari Virginia Commonwealth University telah menemukan suatu jenis baru superatom. Superatom ini terdiri dari atom magnesium yang termagnetisasi, meskipun magnesium alami tidak memiliki aktivitas magnetisme. Tim ini melaporkan bahwa superatom ini terbentuk dari logam pusat besi (Fe) dan 8 atom magnesium (Mg) membentuk struktur yang stabil menyerupai ikosahedral. Klaster ini membentuk semacam magnet kecil dengan sumber magnet berasal dari logam besi dan magnesium yang termagnetisasi. Kombinasi ini sesuai dengan kekuatan magnet dari satu atom Fe dengan distrbusi elektron spin tertentu yang merata di seluruh bagian klaster. Hasil riset mereka telah dipublikasikan pada Proceedings of the National Academy of Sciences.

Riset yang didukung oleh U.S Department of Energy ini membuka peluang ditemukannya metode yang lebih efisien untuk mengubah atom yang tidak bersifat magnet menjadi magnet melalui pengaturan atom magnet tunggal. Meskipun terdapat lebih dari seratus unsur pada tabel periodik, hanya terdapat 9 unsur yang memiliiki karakter magnet pada keadaan padat. Kombinasi antara karakter magnet dan konduktivitas dari superatom ini juga menjadi keuntungan.Magnesium merupakan konduktror listrik yang baik sehingga superatom ini menggabungkan karakter magnet dan konduktivitas listrik pada kulit terluar.

Kestabilan superatom ini dipengaruhi oleh struktur elektronik dari masing-masing penyusunnya. Kelompok superatom dengan delapan atom magnesium menambah kestabilan karena orbital valensi elektron yang terisi penuh. Orbital valensi yang penuh ini lebih sulit dipisahkan dibandingkan dengan orbital yang kosong atau setengah terisi sehingga menjadi lebih stabil. Orbital valensi yang penuh ini ditemui pada golongan gas mulia.

Kombinasi antara karakter kemagnetan dan konduktivitas listrik dari superatom ini dapat digunakan untuk aplikasi perangkat “elektronik molekular”. Teknologi semacam ini dapat menciptakan perkembangan di dunia komputer kuantum dengan prosesor yang lebih cepat, penyimpanan data yang lebih besar, dan sistem pengolahan data yang lebih terintegrasi.


Mengapa tubuh kita membutuhkan unsur logam?

Saya mendengar bahwa tubuh kita membutuhkan sedikit unsur logam. Akan tetapi, tubuh kita terutama terdiri dari senyawa organik. Mengapa tubuh kita membutuhkan unsur logam?Bagaimana unsur logam bekerja dalam tubuh kita?


Jawaban:
 
Dr. Eiichiro Ochiai, seseorang yang sedang mempelajari kimia bioanorganik, bersedia menjawab pertanyaan di atas. Secara singkat, ia berbicara tentang istilah umum kebutuhan unsur logam dalam organisme dan menggambarkan kegunaan biologis unsur logam dengan salah satu unsur logam yang paling banyak digunakan, besi (Fe). Jadi cerita berikut ini diberi judul “Sebuah Kisah Tentang Besi” (© Eiichiro Ochiai).

Sebagai makhluk hidup, kita terdiri dari, secara kimiawi, kebanykan senyawa organik seperti protein, asam nukleat, karbohidrat, vitamin dan sejenisnya. Senyawa organik terdiri dari atom karbon (C), hidrogen (H), oksigen (O) dan nitrogen (N). Sejumlah senyawa organik juga bisa mengandung sulfur (S) atau fosfor (P). Itu saja; tidak ada yang lain. Dapatkah kita hidup dengan baik hanya dengan senyawa organik? Kebanyakan orang-orang tahu bahwa jawabannya adalah tidak. Tulang dan gigi kita terbuat dari senyawa kalsium (Ca), yang tergolong “zat anorganik”. Darah mengandung besi (Fe), sebuah unsur anorganik. Semua orang tahu bahwa kita membutuhkan garam (natrium khlorida, NaCl) meski mereka tidak tahu mengapa. Bahkan, sekitar 30 unsur diketahui sangat dibutuhkan untuk menjalankan fungsi makhluk hidup yang layak. Seperti yang telah Anda ketahui, Hanya ada 100 unsur saja yang ada di alam ini, dan satu pertiga dari unsur tersebut sangat penting bagi makhluk hidup. Unsur yang penting di antaranya adalah (selain dari yang sudah disebutkan): magnesium (Mg), silikon (Si), kalium (K), mangan (Mn), kobal (Co), tembaga (Cu), seng (Zn), molibdenum (Mo), iod (I), selenium (Se), nikel (Ni), dan boron (B). Sebuah bidang penelitian baru kini sedang dikembangkan, yang mempelajari peranan unsur-unsur yang berbeda ini dan peranan senyawanya dalam sistem biologis; ilmu ini disebut “kimia bioanorganik”. Terlalu panjang lebar bila hal ini dibahas dalam forum kali ini; sebab itu, saya memilihkan unsur tertentu dan menggambarkan bidang ilmu yang disebut kimia bioanorganik. Bagian pertama “Pembentukan unsur Besi” bukanlah topik yang pas dari kimia bioanorganik, tapi ditambahkan di sini untuk memberitahu Anda tentang peranan besi yang sangat penting.

Saya yakin setiap orang tidak asing dengan logam besi. Mobil dan mesin sebagian besar terbuat dari besi. Besi adalah salah satu unsur yang tersedia sangat melimpah di alam dan logam yang paling menarik, sebagai satu dari unsur krusial untuk makhluk hidup. Berikut adalah kisah mengenai besi.


Nanopartikel, Berbahaya Bagi Kesehatankah?

Nanosains dan nanoteknologi merupakan ranah ilmu yang dewasa ini berkembang sangat pesat dan digunakan dalam berbagai keperluan. Ukuran partikel yang kecil namun efisiensi yang lebih tinggi merupakan alasan ilmu ini dikembangkan. Namun, ternyata tidak hanya efek positif yang dapat dihasilkan dari perkembangan sains dan teknologi ini tetapi juga efek negatif. Nanopartikel ditengarai membahayakan kesehatan manusia yang kontak dengannya.

Para peneliti dari Centre of Cancer Biomedicine Norwegian Radium Hospital menemukan bahwa nanopartikel dapat mengganggu jalannya transportasi substansi vital masuk dan keluar sel. Tim peneliti ini juga menemukan bahwa terganggunya transportasi tersebut mengakibatkan kerusakan fisiologis sel dan mengganggu fungsi sel yang normal. Meski beberapa jenis nanopartikel telah dimanfaatkan sebagai obat, efek jangka panjangnya dikhawatirkan dapat mengganggu transportasi substansi vital pada sel.

Nanopartikel dapat memasuki tubuh manusia melalui berbagai macam mekanisme. Nanopartikel terlebih dahulu disimpan di dalam vesikel yang berada pada permukaan sel. Vesikel kecil kemudian bergabung membentuk vesikel besar seperti badan multivesikular. Badan multivesikular ini kemudian bergabung dengan lisosom, dimana protein dan makromolekul lainnya dipecah oleh protease dan enzim lainnya. Nanopartikel yang terkandung di dalamnya dapat menyebar di dalam sel dan dapat keluar melalui jalur endosom ataupun daur endosom.

Tim peneliti ini kemudian bereksperimen dengan menggunakan nanopartikel besi oksida yang biasa digunakan pada pencitraan resonansi magnetik (magnetic resonance imaging/MRI) selama 20 tahun. Peneliti menemukan bahwa meski 99% protein sel tidak berikatan dengan nanopartikel sehingga nanopartikel dapat keluar dari sel, 1% lainnya berikatan dengan sel dan tidak dapat dikeluarkan dari sel. Jumlah ini dikhawatirkan dapat mengganggu jalannya sistem transportasi internal sel melalui endosom.

Penelitian ini menjadi penting terutama di bidang pengobatan dan industri farmasetika yang menggunakan nanopartikel. Nanopartikel yang diproduksi sebagai obat-obatan harus mengedepankan risiko akumulasi nanopartikel dalam sel yang dapat mengganggu sistem transportasi sel. Selain itu, nanopartikel obat yang tidak mencapai target harus dapat didegradasi dan dieksresi secara sempurna dari tubuh.


Dikutip dari http://www.chem-is-try.org/artikel_kimia/nanopartikel-membahayakan-kesehatan/

Kamis, 18 Agustus 2011

Software Tabel Periodik Unsur

Sistem tabel periodik unsur merupakan suatu sistem pengelompokkan unsur yang berdasarkan pada sifat fisis dan kimia yang diurutkan menurut kenaikan nomor atom. Melalui pelajaran Kimia di sekolah tingkat menengah, unsur – unsur mulai diperkenalkan baik lambang atom, nama unsur, nomor atom, massa atom relatif, dan lain-lain. Pengenalan unsur ini merupakan dasar dari penguasaan materi Kimia sebelum menginjak pada topik materi kimia yang lebih kompleks lagi.

Sekarang sudah tersedia software tentang tabel periodik unsur yang dikembangkan oleh Paul Alan Freshney dengan alamat website www.freshney.org. Software tersebut dengan titel Periodic Table Classic yang memuat berbagai data unsur seperti data fisis maupun kimia, sejarah penemuan, penamaan unsur, sumber mineral, kegunaan, gambar unsur, dan sebagainya. Untuk memudahkan siswa mempelajari konfigurasi elektron, bilangan kuantum, jari atom, dan jumlah elektron masing-masing kulit juga tersedia di software ini. Kita tinggal klik salah satu unsur yang diinginkan pada tabel periodik, maka akan muncul data yang berkaitan dengan unsur tersebut.

Software tabel periodik ini dapat diunduh secara gratis dari alamat website http://www.freshney.org lalu instal pada komputer. Penggunaan software ini hanya untuk kebutuhan pendidikan saja.

Diharapkan para pelajar dan pendidik yang menekuni kimia dapat dengan mudah mempelajari dan mengembangkan kimia untuk kehidupan.

 
Referensi

HAM, Mulyono. 2008. Kamus Kimia. Jakarta : Bumi Aksara.

Periodic Table Classic. © Paul Alan Freshney. (Diakses dari
http://www.freshney.org).

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More